In this paper, we shall exhibit the use of two principles, “principle of decomposition into residue classes” and “binomial principle of analytic continuation” due to Ram Murty and Sinha and indicate a certain distribution property and the functional equation for the Lipschitz-Lerch transcendent at integral arguments ofs. By considering the limiting cases ,we can also deduce new striking identities for Lipschizt-Lerch transcendent, among which is the Gauss second formula for the digamma function, Lipschitz-Lerch transcendent
Published in |
Pure and Applied Mathematics Journal (Volume 4, Issue 2-1)
This article belongs to the Special Issue Abridging over Troubled Water---Scientific Foundation of Engineering Subjects |
DOI | 10.11648/j.pamj.s.2015040201.16 |
Page(s) | 30-35 |
Creative Commons |
This is an Open Access article, distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution and reproduction in any medium or format, provided the original work is properly cited. |
Copyright |
Copyright © The Author(s), 2014. Published by Science Publishing Group |
Decomposition into Residue Classes, Binomial Expansion, Distribution Property, Zeta-Functions, Functional Equation
[1] | K. Chakraborty, S. Kanemitsu, and H. -L. Li, On the values of a classof Dirichlet series at rational arguments, Proc. Amer. Math. Soc. 138(2010), 1223-1230. |
[2] | G. Eisenstein, Aufgaben und Lehrs¨atze, J. Reine Angew. Math. 27 (1844), 281-283=Math. Werke, Vol. 1, 1975, Chelsea, 108-110. |
[3] | A. Erdléyi, W. Magnus, F. Oberhettinger, and F. G. Tricomi, Highertrancendental functions vol 1, McGraw-hill, New York 1953. |
[4] | H. Hasse, EinSummierungsverfahrenf¨ur die Riemannsche ζ-Reihe,Math. Z. 32(1930), 458-464. |
[5] | A. Hurwitz, MathematischeWerke, Vol. 2, Basel, Birkh¨auser, 1932. |
[6] | M. Ishibashi, An elementary proof of the generalized Eisenstein formula, Sitzungsber. Osterreich. Wiss. Wien, Math. -naturwiss. Kl. 197 (1988), 443-447. |
[7] | S. Kanemitsu, M. Katsurada, and M. Yoshimoto, On the Hurwitz-Lerchzeta function, Aequationes Math. 59 (2000), 1-19. |
[8] | S. Kanemitsu and H. Tsukada, Vistas of special functions, World Scientific,Singapore-London-New York. 2007. |
[9] | D. Klusch, On the Taylor expansion for the Lerch zeta function, J. Math.Anal. Appl. 170 (1992), 513-523. |
[10] | H. -L. Li, M. Hashimoto and S. Kanemitsu, On structural elucidationof Eisenstein’s formula, Sci. China. 53 (2010), 2341-2350. |
[11] | T. Nakamura, Some topics related to Hurwitz-Lerch zeta functions, TheRamanujan J. 21 (2010), 285-302. |
[12] | M. Ram Murty and Kaneenika Sinha, Multiple Hurwitz zeta functions,Proc. Sympos. Pure Math.75 (2006), 135-156. |
[13] | B. Riemann, ¨Uber die Anzahl der Primzahlen, untereinergegebenenGr¨osse, Monatsber. Akad. Berlin, (1859), 1-680 =Collected Works ofBernhard Riemann, ed. by H. Weber, 2nd ed. Dover, New York 1953. |
[14] | J. Sondow, Analytic continuation of Riemann’s zeta function and valuesat negative integers via Euler’s transformation of series, Proc. Amer.Math. Soc. 120 (1994), 421-424. |
[15] | H. M. Srivastava and J. -S. Choi, Series associated with the Zeta and relatedfunctions, Kluwer Academic Publishers, Dordrecht-Boston-London2001. |
[16] | H. M. Stark, Dirichlet’s class-number formula revisited, Contemp. Math.143 (1993), 571-577. |
[17] | X.-H. Wang, Analytic continuation of the Riemann zeta-function, toappear. |
[18] | J. R. Wilton, A proof of Burnside’s formula for and certainallied properties of Riemann’s ζ-function, Mess. Math.55 (1922/1923),90-93. |
APA Style
Tomihiro Arai, Kalyan Chakraborty, Jing Ma. (2014). Applications of the Hurwitz-Lerch Zeta-Function. Pure and Applied Mathematics Journal, 4(2-1), 30-35. https://doi.org/10.11648/j.pamj.s.2015040201.16
ACS Style
Tomihiro Arai; Kalyan Chakraborty; Jing Ma. Applications of the Hurwitz-Lerch Zeta-Function. Pure Appl. Math. J. 2014, 4(2-1), 30-35. doi: 10.11648/j.pamj.s.2015040201.16
AMA Style
Tomihiro Arai, Kalyan Chakraborty, Jing Ma. Applications of the Hurwitz-Lerch Zeta-Function. Pure Appl Math J. 2014;4(2-1):30-35. doi: 10.11648/j.pamj.s.2015040201.16
@article{10.11648/j.pamj.s.2015040201.16, author = {Tomihiro Arai and Kalyan Chakraborty and Jing Ma}, title = {Applications of the Hurwitz-Lerch Zeta-Function}, journal = {Pure and Applied Mathematics Journal}, volume = {4}, number = {2-1}, pages = {30-35}, doi = {10.11648/j.pamj.s.2015040201.16}, url = {https://doi.org/10.11648/j.pamj.s.2015040201.16}, eprint = {https://article.sciencepublishinggroup.com/pdf/10.11648.j.pamj.s.2015040201.16}, abstract = {In this paper, we shall exhibit the use of two principles, “principle of decomposition into residue classes” and “binomial principle of analytic continuation” due to Ram Murty and Sinha and indicate a certain distribution property and the functional equation for the Lipschitz-Lerch transcendent at integral arguments ofs. By considering the limiting cases ,we can also deduce new striking identities for Lipschizt-Lerch transcendent, among which is the Gauss second formula for the digamma function, Lipschitz-Lerch transcendent}, year = {2014} }
TY - JOUR T1 - Applications of the Hurwitz-Lerch Zeta-Function AU - Tomihiro Arai AU - Kalyan Chakraborty AU - Jing Ma Y1 - 2014/12/27 PY - 2014 N1 - https://doi.org/10.11648/j.pamj.s.2015040201.16 DO - 10.11648/j.pamj.s.2015040201.16 T2 - Pure and Applied Mathematics Journal JF - Pure and Applied Mathematics Journal JO - Pure and Applied Mathematics Journal SP - 30 EP - 35 PB - Science Publishing Group SN - 2326-9812 UR - https://doi.org/10.11648/j.pamj.s.2015040201.16 AB - In this paper, we shall exhibit the use of two principles, “principle of decomposition into residue classes” and “binomial principle of analytic continuation” due to Ram Murty and Sinha and indicate a certain distribution property and the functional equation for the Lipschitz-Lerch transcendent at integral arguments ofs. By considering the limiting cases ,we can also deduce new striking identities for Lipschizt-Lerch transcendent, among which is the Gauss second formula for the digamma function, Lipschitz-Lerch transcendent VL - 4 IS - 2-1 ER -