In paper, being based upon the results of our works deals with experimental and theoretical studies of physical characteristics of nanoparticles responsible for specific optical properties of dielectric nanocomposites. During theoretical description and explanation of experimental data obtained, we considered nanoparticle as a multi-particle quantum system of charges which combines elements of quantum structures of a polyatomic molecule and a bulk crystal. Considering nanocomposites with quite a low concentration of nanoparticles (fractions of a percent), we didn’t take into account interparticle interaction.
Published in |
Optics (Volume 3, Issue 6-1)
This article belongs to the Special Issue Optics and Spectroscopy of the Charge Carriers and Excitons States in Quasi - Zero - Dimensional Nanostructures |
DOI | 10.11648/j.optics.s.2014030601.14 |
Page(s) | 22-37 |
Creative Commons |
This is an Open Access article, distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution and reproduction in any medium or format, provided the original work is properly cited. |
Copyright |
Copyright © The Author(s), 2014. Published by Science Publishing Group |
Dielectric Nanocomposite, Quantum Nanostructure, Electronic Structure, Charge Carriers and Excitons States
[1] | V.P. Dzyuba, A.E. Krasnok, Yu.N. Kulchin. (2010). Nonlinear refractive index of the dielectric nanocomposites in weak optical fields. Technical Physics Letters (Rus), Vol.36, No 21, pp. 1-9, ISSN: 0320-0116 |
[2] | V.P. Dzyuba, Yu.N. Kulchin. (2010). The Variation of the Nanopaticles’ Shape and Quantum –Dimensional States of the Quantum Dots or Nanoparticles. Pacific Science Review. V.12, No 1, pp. 102-104, ISSN: 1229-5450 |
[3] | V.P. Dzyuba, A.E. Krasnok, Yu.N. Kulchin, I.V. Dzyuba. (2010). Nonlinear Transmission of Light by Dielectric Nanocomposites. Pacific Science Review. V.12, No 1, pp. 106-108, ISSN: 1229-5450 |
[4] | A.V. Federov. (2005). Optics of nanostructure, Nedra, ISBN: 5-94089-059-8, Saint Petersburg |
[5] | Litty Irimpan, Bindu Krishnan, V.P.N. Nampoori, P. Radhakrishnan. (2008) Nonlinear optical characteristics of nanocomposites of ZnO–TiO2–SiO2 . Optical Materials, Vol.31, No2, pp.361-365, ISSN: 0925-3467 |
[6] | Bindu Krishnana, Litty Irimpana, V.P.N. Nampoora, V. Kumarc. (2008). Synthesis and nonlinear optical studies of nano ZnO colloids. Physica E, Vol.40, No8, pp. 2787–2790, ISSN: 1386-9477 |
[7] | Yu.N. Kulchin, A.V. Scherbakov, V.P. Dzyuba, S.S. Voznesenskiy, G.T. Mikaelyan. (2008). Nonlinear-optical properties of heterogeneous liquid nanophase composites based on high-energy-gap Al2O3 nanoparticles. Quantum Electronics, Vol. 38 , No2, pp. 154 – 158, ISSN: 1063-7818 |
[8] | Yu. N. Kulchin, A. V. Scherbakov, V. P. Dzyuba, S. S. Voznesenskiy. (2009). Interaction of Collinear Light Beams with Different Wavelengths in a heterogeneous liquid-phase nanocomposite. Technical Physics Letters (Rus), Vol.35, No. 7, pp. 640–642, ISSN: 0320-0116 |
[9] | Yu. N. Kulchin, V.P. Dzyuba, A.V. Scherbakov, S.S. Voznesenskiy. (2009). Nonlinear optical interaction of radiation with heterogeneous liquid-phase nanocomposites In: Nonlinear waves (2008), academician Gaponov-Grehov, pp. 361-382, ISBN: 978-5—8048-0069-8, Nizhny Novgorod |
[10] | Yu.N. Kulchin, V.P. Dzyuba, A.V. Scherbakov. (2009). Optical Transmittance Spectra of Insulator nanoparticles in bulk heterocomposites. Semiconductors (Rus), Vol.43, No. 3, pp. 331–339, ISSN:0015-3222 |
[11] | L.D. Landau, L.D. Lifshitz. (2002). Quantum Mechanics, Fizmatlit, ISBN: 5-9221-0057-2, Moscow |
[12] | Miheev, A.I. Sidorov. (2004). Optical nonlinearity of nanoparticles of wide-gap semiconductors and insulators in visible and near infrared spectral region. Technical Physics (Rus), Vol.74, No. 6, pp.77-82, ISSN: 0044-4642 |
[13] | Noriyuki Miyata, Masakazu Ichikawa. (2004). Scanning-probe-induced defects in thin SiO2 film on Si: Comparison with Si clusters. Phys. Rev. B. V.70 No7, pp. 07306-07340 |
[14] | A.I. Ryasnyanskiy, B. Palpant, S. Debrus, U. Pal, A.L. Stepanov. (2009). Nonlinear Optical Properties of Gold Nanoparticles Dispersed in Different Optically Transparent Matrices. Physics of the Solid State, Vol.51, No. 1, pp. 55–60, ISSN: 1063-7834 |
[15] | S.I. Pokutnyi. (2006). Absorption and scattering of light by one-particle states of charge carriers in semiconductor quantum dots. Semiconductors (Rus), Vol.40, No. 2, pp. 223-228, ISSN: 0015-3222; |
[16] | S.I.Pokutnyi. (2013). Absorption of light in positron and electron states in quasi-zero-dimensional nanosystems. Optics, Vol.2, No.4, pp. 47-50. |
[17] | S.I.Pokutnyi. (2013). Absorption of light at electron states in quasi-zero-dimensional nanosystems. Technical Physics (Rus), Vol.58, No.11, pp. 1661-1664, ISSN: 1063-7842. |
[18] | S.I.Pokutnyi. (2011). Exciton states in quantum dots. Phys.Express, Vol.1, No.3, pp. 158-168. |
[19] | S.I.Pokutnyi, (2005). Optical nanolaser heavy hole transitions in quasi – zero – dimensional semiconductors nanosystems. Physics Letters A, V.342, No. 5, pp. 347-352. |
[20] | S.I.Pokutnyi. (2011). Interband absorption of light in quantum dots. J. Nanoscience Lett., V.1, No. 3, pp.191-198. |
[21] | S.I.Pokutnyi. (2004). Size quantization Stark effect in semiconductor quantum dots. J. Appl. Phys. V.96, No. 2, pp. 1115-1122. |
[22] | S.I.Pokutnyi. (2014). Local electron states in ellipsoidal nanosystems in homogeneous magnetic field. Open Journal of Modern Physics. V. 2, No. 6, pp. 22-29. |
[23] | Y.R. Shen. (1983). The Principles Of Nonlinear Optics,. John Wiley & Sons, ISBN: 5-02-014043-0 |
[24] | A.G. Vituhnovsky, A.A. Isaev, V.S. Lebedev. (2008). Light-induced nonlinearity of CdSe/ZNs quantum dots with millisecond relaxation tine. Russian nanotechnologies, Vol. 3, No. 11-12, pp. 110-117, ISSN: 1992-7223 |
APA Style
Vladimir P. Dzyuba, Yurii N. Kulchin, Sergey I. Pokutnyi. (2014). Optical Nonlinearity of Dielectric Nanocomposite. Optics, 3(6-1), 22-37. https://doi.org/10.11648/j.optics.s.2014030601.14
ACS Style
Vladimir P. Dzyuba; Yurii N. Kulchin; Sergey I. Pokutnyi. Optical Nonlinearity of Dielectric Nanocomposite. Optics. 2014, 3(6-1), 22-37. doi: 10.11648/j.optics.s.2014030601.14
AMA Style
Vladimir P. Dzyuba, Yurii N. Kulchin, Sergey I. Pokutnyi. Optical Nonlinearity of Dielectric Nanocomposite. Optics. 2014;3(6-1):22-37. doi: 10.11648/j.optics.s.2014030601.14
@article{10.11648/j.optics.s.2014030601.14, author = {Vladimir P. Dzyuba and Yurii N. Kulchin and Sergey I. Pokutnyi}, title = {Optical Nonlinearity of Dielectric Nanocomposite}, journal = {Optics}, volume = {3}, number = {6-1}, pages = {22-37}, doi = {10.11648/j.optics.s.2014030601.14}, url = {https://doi.org/10.11648/j.optics.s.2014030601.14}, eprint = {https://article.sciencepublishinggroup.com/pdf/10.11648.j.optics.s.2014030601.14}, abstract = {In paper, being based upon the results of our works deals with experimental and theoretical studies of physical characteristics of nanoparticles responsible for specific optical properties of dielectric nanocomposites. During theoretical description and explanation of experimental data obtained, we considered nanoparticle as a multi-particle quantum system of charges which combines elements of quantum structures of a polyatomic molecule and a bulk crystal. Considering nanocomposites with quite a low concentration of nanoparticles (fractions of a percent), we didn’t take into account interparticle interaction.}, year = {2014} }
TY - JOUR T1 - Optical Nonlinearity of Dielectric Nanocomposite AU - Vladimir P. Dzyuba AU - Yurii N. Kulchin AU - Sergey I. Pokutnyi Y1 - 2014/07/31 PY - 2014 N1 - https://doi.org/10.11648/j.optics.s.2014030601.14 DO - 10.11648/j.optics.s.2014030601.14 T2 - Optics JF - Optics JO - Optics SP - 22 EP - 37 PB - Science Publishing Group SN - 2328-7810 UR - https://doi.org/10.11648/j.optics.s.2014030601.14 AB - In paper, being based upon the results of our works deals with experimental and theoretical studies of physical characteristics of nanoparticles responsible for specific optical properties of dielectric nanocomposites. During theoretical description and explanation of experimental data obtained, we considered nanoparticle as a multi-particle quantum system of charges which combines elements of quantum structures of a polyatomic molecule and a bulk crystal. Considering nanocomposites with quite a low concentration of nanoparticles (fractions of a percent), we didn’t take into account interparticle interaction. VL - 3 IS - 6-1 ER -