| Peer-Reviewed

Dependency of the Distribution of Salmonella-Specific Antibodies SP-Ratios on Weight and Sampling Time

Received: 28 March 2016     Accepted: 14 April 2016     Published: 26 April 2016
Views:       Downloads:
Abstract

Salmonella is one of the major sources of toxin-infection in humans worldwide and is due to transmission of pathogens via pork. This paper aims at investigating the effect of season and animal weight on SP-ratio. Pigs were sampled from different herds and SP-ratios were measured and categorized into two different groups. Depending on the categorization of the response and whether or not clustering is taken into account, different binary logistic and multicategory logit models were considered. Without taking clustering into account, ordinary logistic regression, adjacent logit, continuation-ratio logit and proportional odds model were fitted. GEE and GLMM were considered to correct for the herd-effect. Among the multicategory logit models, the proportional odds model is preferred, since it did not reject the assumption of common slopes. However, regarding the goodness-of-fit test, this model did not adequately fit the data. Both GEE and GLMM have their advantages, depending on the specific focus and question of interest. In all models, the interaction between weight and season was not significant. Weight was found significant, while season was insignificant in all models. As it was expected, weight as indicator for age was found to have a significant effect on SP-ratios.

Published in American Journal of Theoretical and Applied Statistics (Volume 5, Issue 3)
DOI 10.11648/j.ajtas.20160503.12
Page(s) 87-93
Creative Commons

This is an Open Access article, distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution and reproduction in any medium or format, provided the original work is properly cited.

Copyright

Copyright © The Author(s), 2016. Published by Science Publishing Group

Keywords

Salmonella, SP-ratios, Logit Models, GEE, GLMM, Herd-Effect

References
[1] Chin, J. (2000). Control of communicable diseases manual (Vol. 17). Washington, DC: American Public Health Association.
[2] Hoelzer, K., Moreno Switt, A. I., & Wiedmann, M. (2011). Animal contact as a source of human non-typhoidal salmonellosis. Vet res, 42(1), 34.
[3] Mead, P. S., Slutsker, L., Dietz, V. McCaig, L. F., Bresee, J. S., Shapiro, C., Griffn, P. M. and Tauxe, R. V. (1999). Food-related illness and death in the United States. Emerging Infectious Diseases, 5(5), 607-625.
[4] Thorns, C. J. (2000). Bacterial food-borne zoonoses. Review Scientific et Technique (International Office of Epizootics), 19(5), 226-239.
[5] NRRS (2005). National Reference Centre for Salmonella and Shigella: Annual report. Retrieved from http: //www.iph.fgov.be/bacterio/iframes/rapports/2004/Salm 2004 NL cover.pdf.
[6] Delgado CL, Rosegrant MW, Meijer S. 2001. Livestock to 2020: the revolution continues. Auckland, New Zealand: Intl. Trade Research Consortium (IATRC).
[7] Baer, Arica A. and Miller, Michael J. and Dilger, Anna C. (2013). Pathogens of Interest to the Pork Industry: A Review of Research on Interventions to Assure Food Safety. Comprehensive Reviews in Food Science and Food Safety, 12(2), 183-217.
[8] CDC (Centers for Disease Control and Prevention): Preliminary Food Net data on the incidence of infection with pathogens transmitted commonly through food - 10 states. MMWR Morb Mortal Wkly Rep 2009, 59(14):418-422.
[9] CDC. 2011. CDC estimates of foodborne illness in the United States. Center for Disease Control. Available from: http://www.cdc.gov/foodborneburden/2011-foodborne-estimates.html.
[10] Bollaerts, K., Aerts, M., Ribbens, S., Van der Stede Y., Boone, I. and Mintiens, K. (2008). Identification of Salmonella high risk pig farms in Belgium using semi-parametric quantile regression. Journal of Royal Statistical Society (series A) 171(2), 449–464.
[11] Molenberghs, G. and Verbeke, G. (2005). Models for discrete longitudinal data. New York: Springer.
[12] Gerhard Tutz (1991). Sequential models in categorical regression. Computational Statistics & Data Analysis, 11(3), 275-295.
Cite This Article
  • APA Style

    Isaac Akpor Adjei, Md. Rezaul Karim, Rachid Muleia, Peter Jouck. (2016). Dependency of the Distribution of Salmonella-Specific Antibodies SP-Ratios on Weight and Sampling Time. American Journal of Theoretical and Applied Statistics, 5(3), 87-93. https://doi.org/10.11648/j.ajtas.20160503.12

    Copy | Download

    ACS Style

    Isaac Akpor Adjei; Md. Rezaul Karim; Rachid Muleia; Peter Jouck. Dependency of the Distribution of Salmonella-Specific Antibodies SP-Ratios on Weight and Sampling Time. Am. J. Theor. Appl. Stat. 2016, 5(3), 87-93. doi: 10.11648/j.ajtas.20160503.12

    Copy | Download

    AMA Style

    Isaac Akpor Adjei, Md. Rezaul Karim, Rachid Muleia, Peter Jouck. Dependency of the Distribution of Salmonella-Specific Antibodies SP-Ratios on Weight and Sampling Time. Am J Theor Appl Stat. 2016;5(3):87-93. doi: 10.11648/j.ajtas.20160503.12

    Copy | Download

  • @article{10.11648/j.ajtas.20160503.12,
      author = {Isaac Akpor Adjei and Md. Rezaul Karim and Rachid Muleia and Peter Jouck},
      title = {Dependency of the Distribution of Salmonella-Specific Antibodies SP-Ratios on Weight and Sampling Time},
      journal = {American Journal of Theoretical and Applied Statistics},
      volume = {5},
      number = {3},
      pages = {87-93},
      doi = {10.11648/j.ajtas.20160503.12},
      url = {https://doi.org/10.11648/j.ajtas.20160503.12},
      eprint = {https://article.sciencepublishinggroup.com/pdf/10.11648.j.ajtas.20160503.12},
      abstract = {Salmonella is one of the major sources of toxin-infection in humans worldwide and is due to transmission of pathogens via pork. This paper aims at investigating the effect of season and animal weight on SP-ratio. Pigs were sampled from different herds and SP-ratios were measured and categorized into two different groups. Depending on the categorization of the response and whether or not clustering is taken into account, different binary logistic and multicategory logit models were considered. Without taking clustering into account, ordinary logistic regression, adjacent logit, continuation-ratio logit and proportional odds model were fitted. GEE and GLMM were considered to correct for the herd-effect. Among the multicategory logit models, the proportional odds model is preferred, since it did not reject the assumption of common slopes. However, regarding the goodness-of-fit test, this model did not adequately fit the data. Both GEE and GLMM have their advantages, depending on the specific focus and question of interest. In all models, the interaction between weight and season was not significant. Weight was found significant, while season was insignificant in all models. As it was expected, weight as indicator for age was found to have a significant effect on SP-ratios.},
     year = {2016}
    }
    

    Copy | Download

  • TY  - JOUR
    T1  - Dependency of the Distribution of Salmonella-Specific Antibodies SP-Ratios on Weight and Sampling Time
    AU  - Isaac Akpor Adjei
    AU  - Md. Rezaul Karim
    AU  - Rachid Muleia
    AU  - Peter Jouck
    Y1  - 2016/04/26
    PY  - 2016
    N1  - https://doi.org/10.11648/j.ajtas.20160503.12
    DO  - 10.11648/j.ajtas.20160503.12
    T2  - American Journal of Theoretical and Applied Statistics
    JF  - American Journal of Theoretical and Applied Statistics
    JO  - American Journal of Theoretical and Applied Statistics
    SP  - 87
    EP  - 93
    PB  - Science Publishing Group
    SN  - 2326-9006
    UR  - https://doi.org/10.11648/j.ajtas.20160503.12
    AB  - Salmonella is one of the major sources of toxin-infection in humans worldwide and is due to transmission of pathogens via pork. This paper aims at investigating the effect of season and animal weight on SP-ratio. Pigs were sampled from different herds and SP-ratios were measured and categorized into two different groups. Depending on the categorization of the response and whether or not clustering is taken into account, different binary logistic and multicategory logit models were considered. Without taking clustering into account, ordinary logistic regression, adjacent logit, continuation-ratio logit and proportional odds model were fitted. GEE and GLMM were considered to correct for the herd-effect. Among the multicategory logit models, the proportional odds model is preferred, since it did not reject the assumption of common slopes. However, regarding the goodness-of-fit test, this model did not adequately fit the data. Both GEE and GLMM have their advantages, depending on the specific focus and question of interest. In all models, the interaction between weight and season was not significant. Weight was found significant, while season was insignificant in all models. As it was expected, weight as indicator for age was found to have a significant effect on SP-ratios.
    VL  - 5
    IS  - 3
    ER  - 

    Copy | Download

Author Information
  • Department of Mathematics, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana

  • Department of Statistics, Jahangirnagar University, Dhaka, Bangladesh

  • Department of Mathematics and Informatics, Faculty of Science, Eduardo Mondlane University, Maputo, Mozambique

  • FPS Health, Food Chain Safety and Environment, Brussels, Belgium

  • Sections