| Peer-Reviewed

Ionic Liquids: A Review on Greener Chemistry Applications, Quality Ionic Liquid Synthesis and Economical Viability in a Chemical Processes

Received: 12 April 2016     Accepted: 22 April 2016     Published: 25 May 2016
Views:       Downloads:
Abstract

Climate change overshadowing the globe is a vibrant phenomenon now days. Decades have passed since scientists from around the world started informing and forecasting the impact of this threatening climatic condition. It is not only disseminating the likely consequence, but also scientists have been battling to uphold safe environment for the next generation. Politicians have also been making climatic issue discussion on the top of their agenda on different world summit. As has been mentioned several times, this unfortunate environmental feature came in to being by human activity (directly or indirectly) and is believed to be reversed by same creature. This review is intended thinking that safe chemical process (from simple laboratory experiment to huge industrial process), reduced effluent to the environment and minimized cost to the process, which can be brought about by utilization of ionic liquids, could be one of the elements to retard and/or stop this catastrophe. In this regard, an attempt has been made to include the meaning, history, properties and different applications of ionic liquids, the green chemistry.

Published in American Journal of Physical Chemistry (Volume 5, Issue 3)
DOI 10.11648/j.ajpc.20160503.14
Page(s) 74-79
Creative Commons

This is an Open Access article, distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution and reproduction in any medium or format, provided the original work is properly cited.

Copyright

Copyright © The Author(s), 2016. Published by Science Publishing Group

Keywords

Ionic Liquids, Greener Chemistry, Safe Chemical Process, Climatic Condition

References
[1] A Stark K. R Seddon, Kirk-Othner Encyclopedia of chemical technology.
[2] A. L. Monteiro, F. K. Zinn, R. F. de Souza, J. Dupont, Tetrahedron: Asymmetry 1997, 8, 177.
[3] Bonhote, P. Dias A-P, Papageorgiou K, Kanyara Sunderman K and Gratze (1996). Inorg. chem 35:1168-1178.
[4] C. J. Mathews, P. J. Smith, T. Welton, Chem. Commun. 2000, 1249.
[5] C. M. Gordon, A. McCluskey, Chem. Commun. 1999, 1431.
[6] C. P. Mehnert, N. C. Dispenziere, R. A. Cook, Chem. Commun. 2002, 1610.
[7] C. W. Lee, Tetrahedron Lett. 1999, 40, 2461
[8] Catalysis in Ionic Liquid, C. Zhang, Progress in Catal. 2006, 153-237.
[9] Christopher T. Burns, Sungwon Lee, Sonke, Sefert and Millicent A Firestone, Polm. Adv. Technol. 2008: 19: 1369-1382.
[10] D. Fang, Jian Cheng, Kai Gong, Qun-Rong, shi, Xin-Li Zhou, Zu-Liang Liu, J. of fluorine chemistry 129(2008)108-111.
[11] David A. Nagib, Mark E. Scott, and David W. C. MacMillan, Organocatalysis J. AM. Chem. Soc. 2009.
[12] David K. Bwambok, Marwani, Vivan E. Fernand, Sayoo. Fakayode, Mark Lowry, Chirality 20; 151-158(2008).
[13] Domaska U, Marciniak A and Krolikowski M, J phy chem. B (2008) (in press).
[14] E. F. Friedel, JAOCS, Vol, 67. No. 7 (July1999).
[15] F. Favre, H. Olivier-Bourbigou, D. Commereuc, L. Saussine, Chem. Commun. 1360, (2001).
[16] Fenin A, Floreni D A, King L A, Landers J S, Piersma B J, Stech D J, Vaughn J S, Wikes J S and Williams J L, J phychem, 88(1984)2614.
[17] Francesca Giacomina, Auke Meetsma, Lavinia Panella, Laurent Lefort, Andre H. M. de Vries, and Johannes G. de Vries, Angew. Chem. Int. Ed. 2007, 46, 1497–1500.
[18] Functional Design of Ionic Liquids, H. Ohno Bull. Chem. Soc. Jpn, 2006, 79, 11, 1665.
[19] G. W. Kabalka, R. R. Malladi, Chem. Commun. 2000, 2191.
[20] H. Hamaguchi, Expected Materials for the Future (MiraiZairyo) 2005, 5, 29.
[21] Hagiwara R & Lee J S, electrochemistry, 75(2007)23).
[22] Huddleson JG, Wilauer HD, Swatlosky RP, Viser AE and Rogers RD (1998) chem. Comm. 1765-1766.
[23] Ionic Liquids in synthesis, 2nd Ed. (Eds: P. Wasserecheid, T. Welton), Wiley-VCH, Weinhem 2008, P. 7.
[24] J. L. Reynolds, K. R. Erdner, P. B. Jones, Org. Lett. 2002, 4, 917.
[25] J. Ross, J. Xiao, Green Chem. 2002, 4, 129.
[26] J. S. Yadav, B. V. S. Reddy, A. K. Basak, A. V. Narsaiah, Tetrahedron Lett. 2003, 44, 1047.
[27] J. S. Wikes, M. J. Zaworotko, chem. Coomm.1992, 965. C. M. Gordo. J. Muldon.
[28] Ji-Channg Xiao, Chengfeng ye, and Jean'ne M. Shreeve, Org. Lett. 7, No. 10, 2005.
[29] K.-S. Yeung, M. E. Farkas, Z. Qiu, Z. Yang, Tetrahedron Lett. 2002, 43, 5793.
[30] Kamal A and Chouhan G92004), Adv Synth catl 346: 579-82.
[31] Karodia N, Guise S. Newlands C and Anderson J-A (1998). chem.comm: 1636-37.
[32] Kenneth R. Seddon, Annegret Stark, and maria-Jose Torres, Pure and applied chemistry, 2000, 72, 2275-2287.
[33] Kluwer, Dordrech, 2003, IL as Green Solvents.
[34] Kosmuliski M, Gustaffson J and Rosenholm J B, Thermchina Acta, 412(2004) 47.
[35] L. Xu, W. Chen, J. Xiao, Organometallics 2000, 19, 1123.
[36] Lee, S. Chem. Commun., 2006, 1049-1063.
[37] Li, Yling, GU, Dagong, Xu, Xiaping, Chinese journal of Chem., 2009.27, 1558-1562.
[38] Lucas P, EI, Mehdi N, HO. HA and Rogers RD (2000). inorg.chem 35:1168-78.
[39] M. Badri, J.-J. Brunet, Tetrahedron Lett. 1992, 33, 4435.
[40] Morrison, D. W.; Forbes, D. C.; Davis, Jr., J. H. Tetrahedron Lett., 42, 2001, 6053-6055.
[41] Namboodiri. VV and Varma RS (2007) Org. Lett.4:3161-3163.
[42] Natalia V. Pleechkova and Kenneth R. Seddon, chem. Soc. Rev, 2008, 37, 123-150.
[43] NATO Science Series II; Mathematics, Physics and Chemistry, Green Industrial application of IL, Vol 92.
[44] New Frontiers for Ionic Liquids, C & EN, 2007, Vol 85, N°1, 23-26.
[45] Noda A, Hayzamizu K, and Watanabe M, J phychem B 107(2001) 4603.
[46] P. Bonhote, A.-P. Dias, N. Papageorgiou, K. Kalyanasundaram, M. Gratzel, Inorg. Chem. 1996, 35, 1168.
[47] Palimkar, S. S.; Siddiqui, S. A.; Daniel, T.; Lahoti, R. J.; Srinivasan, K. V.; J. Org. Chem., 2003, 68, 9371-9378.
[48] Paul J. Dyson and Tilmann J. Geldbach, the Electrochemical Society Interface. Spring 2007
[49] Pringle J M, Golding N J, Baranyai K, Forsthy G B, Deacon G B, Scott J L and McFarlane D R new J chem., 27(2003).
[50] Progress and Prospects, ACS Symposium Series, 856; ACS; 2003.
[51] R. Rodgers et al Science, 2003, vol 302, p 31; Chemical & Engineering News, 2006, 84, 14
[52] Roger Sheldon, chem.commun.2001, 2399-2407
[53] S. Hayashi, H. Hamaguchi, Chem. Lett. 2004, 33, 1590.
[54] S. T. Handy, X. Zhang, Org. Lett. 2001, 3, 233.
[55] S. Zhang et al. J. Phys. Chem. Ref. Data, 2006, 35, 4, 1475.
[56] T. Fischer, A. Sethi, T. Welton, J. Woolf, Tetrahedron Lett. 1999, 40, 793.
[57] T. Welton, Chem. Rev. 1999, 99, 2071.
[58] Talay, Ugmar, Akmen, Oner Hortacsu, J. of super critical fluids 43(2007)150-180.
[59] V. L. Boulaire, R. Gree, Chem. Commun. 2000, 2195.
[60] Wilkes, J. S. Green Chemistry, 2002, 4, 73-80
[61] Wu, H-H.; Yang, F.; Cui, P.; Tang, J.; He, M-Y. Tetrahedron Lett., 2004, 45, 4963-4965.
[62] Xu W, Cooper E I, and Angell CA, J PHY CHEM B 107(2003) 6176.
[63] Y. Takeuchi, T. Tarui, N. Shibata, Org. Lett. 2000, 2, 639
[64] Yang J-Z Tian P, He L-L and Xu W-G (2003) Studies On room temperature Ionic Liquid InCl3-emic. Fluid Phase Equil 204:295-302.
[65] Yao-Lun Chen, Shih-Wen Lee, Yun Chi, Kuo-Chu Hwang, and Sujit Baran Kumar, Inorganic Chemistry, Vol. 44, No. 12, 2005.
[66] Yong Zhou, current Nano science, 2005.1, 35-42.
[67] Zhen Ma, Jihong Yu and Sheng Dai, Adv. Matter.2009, 21, 1-25 2008 Wiley periodicals.
[68] Zhiyong Gu and Joan F. Brennecke, J. Chem. Eng. Data 2002, 47, 339-34512.
Cite This Article
  • APA Style

    Dejene Disasa Irge. (2016). Ionic Liquids: A Review on Greener Chemistry Applications, Quality Ionic Liquid Synthesis and Economical Viability in a Chemical Processes. American Journal of Physical Chemistry, 5(3), 74-79. https://doi.org/10.11648/j.ajpc.20160503.14

    Copy | Download

    ACS Style

    Dejene Disasa Irge. Ionic Liquids: A Review on Greener Chemistry Applications, Quality Ionic Liquid Synthesis and Economical Viability in a Chemical Processes. Am. J. Phys. Chem. 2016, 5(3), 74-79. doi: 10.11648/j.ajpc.20160503.14

    Copy | Download

    AMA Style

    Dejene Disasa Irge. Ionic Liquids: A Review on Greener Chemistry Applications, Quality Ionic Liquid Synthesis and Economical Viability in a Chemical Processes. Am J Phys Chem. 2016;5(3):74-79. doi: 10.11648/j.ajpc.20160503.14

    Copy | Download

  • @article{10.11648/j.ajpc.20160503.14,
      author = {Dejene Disasa Irge},
      title = {Ionic Liquids: A Review on Greener Chemistry Applications, Quality Ionic Liquid Synthesis and Economical Viability in a Chemical Processes},
      journal = {American Journal of Physical Chemistry},
      volume = {5},
      number = {3},
      pages = {74-79},
      doi = {10.11648/j.ajpc.20160503.14},
      url = {https://doi.org/10.11648/j.ajpc.20160503.14},
      eprint = {https://article.sciencepublishinggroup.com/pdf/10.11648.j.ajpc.20160503.14},
      abstract = {Climate change overshadowing the globe is a vibrant phenomenon now days. Decades have passed since scientists from around the world started informing and forecasting the impact of this threatening climatic condition. It is not only disseminating the likely consequence, but also scientists have been battling to uphold safe environment for the next generation. Politicians have also been making climatic issue discussion on the top of their agenda on different world summit. As has been mentioned several times, this unfortunate environmental feature came in to being by human activity (directly or indirectly) and is believed to be reversed by same creature. This review is intended thinking that safe chemical process (from simple laboratory experiment to huge industrial process), reduced effluent to the environment and minimized cost to the process, which can be brought about by utilization of ionic liquids, could be one of the elements to retard and/or stop this catastrophe. In this regard, an attempt has been made to include the meaning, history, properties and different applications of ionic liquids, the green chemistry.},
     year = {2016}
    }
    

    Copy | Download

  • TY  - JOUR
    T1  - Ionic Liquids: A Review on Greener Chemistry Applications, Quality Ionic Liquid Synthesis and Economical Viability in a Chemical Processes
    AU  - Dejene Disasa Irge
    Y1  - 2016/05/25
    PY  - 2016
    N1  - https://doi.org/10.11648/j.ajpc.20160503.14
    DO  - 10.11648/j.ajpc.20160503.14
    T2  - American Journal of Physical Chemistry
    JF  - American Journal of Physical Chemistry
    JO  - American Journal of Physical Chemistry
    SP  - 74
    EP  - 79
    PB  - Science Publishing Group
    SN  - 2327-2449
    UR  - https://doi.org/10.11648/j.ajpc.20160503.14
    AB  - Climate change overshadowing the globe is a vibrant phenomenon now days. Decades have passed since scientists from around the world started informing and forecasting the impact of this threatening climatic condition. It is not only disseminating the likely consequence, but also scientists have been battling to uphold safe environment for the next generation. Politicians have also been making climatic issue discussion on the top of their agenda on different world summit. As has been mentioned several times, this unfortunate environmental feature came in to being by human activity (directly or indirectly) and is believed to be reversed by same creature. This review is intended thinking that safe chemical process (from simple laboratory experiment to huge industrial process), reduced effluent to the environment and minimized cost to the process, which can be brought about by utilization of ionic liquids, could be one of the elements to retard and/or stop this catastrophe. In this regard, an attempt has been made to include the meaning, history, properties and different applications of ionic liquids, the green chemistry.
    VL  - 5
    IS  - 3
    ER  - 

    Copy | Download

Author Information
  • Department of Chemistry, School of Natural and Computational Science, Madda Walabu University, Bale-Robe, Ethiopia

  • Sections