| Peer-Reviewed

Phase Matched Third Harmonic Generation of a Gaussian Laser Pulse in High-Density Quantum Plasma

Received: 22 July 2016     Accepted: 10 August 2016     Published: 6 October 2016
Views:       Downloads:
Abstract

Third harmonic generation due to linearly polarized Gaussian laser pulse propagating through quantum plasma immersed in transverse wiggler magnetic field is studied using the quantum hydrodynamic (QHD)model. The effects associated with the Fermi pressure, the Bohm potential and the electron spin have been taken into account.Wiggler magnetic field plays both a dynamic role in producing the harmonic current and a kinematical role in ensuring phase-matching. It is shown that the harmonic radiation attain the maximum valueat an instant when the phase matching is satisfied and thereafter decreases at later duration of laser pulse. The quantum effects also add to harmonic generation in the phase-matched case.

Published in American Journal of Modern Physics (Volume 5, Issue 5)
DOI 10.11648/j.ajmp.20160505.16
Page(s) 154-161
Creative Commons

This is an Open Access article, distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution and reproduction in any medium or format, provided the original work is properly cited.

Copyright

Copyright © The Author(s), 2016. Published by Science Publishing Group

Keywords

Quantum Plasma, Harmonic Generation, Phase Matching

References
[1] E. Esarey et al.,“Nonlinear analysis of relativistic harmonic generation by intense lasers in plasma” , IEEE Trans. Plasma Sci., vol 21, pp. 95-104, 1993.
[2] W. B.Mori, C. D. Decker,andW. P. Leemans, “Relativistic harmonic content of nonlinear electromagnetic waves in underdense plasmas”, IEEE Trans. Plasma Sci., vol. 21,pp. 110-119, 1993.
[3] L. M. Goldman, W.Seka, K. Tanaka, R. Short,and A. Simon, "The use of laser harmonic spectroscopy as a targetdiagnostic,” Can. J. Phys., vol. 64, pp. 969-976, 1986.
[4] C Yamanaka, T. Yamanaka,T.Sasaki, J. Mizui, and H. B.Kang., “Brillouin scattering and parametric double resonance in laser produced plasmas”,Phys. Rev. Lett., vol 32, pp.1038-1041, 1974.
[5] K. Tanakaet al., “Evidence of parametric instabilities in second harmonic spectra from 1054 nm laser produced plasmas”, Phys. Fluids., vol 27, pp. 2187-2190, 1984.
[6] D. P. Tewari, andV. K. Tripathi, “Second harmonic generation of upper hybrid radiation in a plasma”, Phys. Rev. A. vol 21, pp. 1698-1703,1979.
[7] B. H- Ahn, W. W. Clark III, R. R. hurtz II, and C. D.Bates,“Second harmonic generation in LiNbO and LiTaO in the millimeter wave region”,J. Appl. Phys., vol. 54, pp.1251-1255, 1983.
[8] X. U. Zhishan, et al.,“Second harmonic emission from laser-plasma interactions”, J. Appl. Phy., vol. 54, pp.4902-4908,1983.
[9] R. Dragila,“Second harmonic generation at resonance absorption and modified plasma density profile”, J. Appl. Phys.,vol 53, pp. 865-867, 1982.
[10] C. Grebogi, V. K. Tripathi,and H. H. Chen,“Harmonic generation of radiation in a steep density profile”, Phys. Fluids, vol. 26, pp.1904-1908, 1983.
[11] C. Liao, P. Bundman, and G. I. Stegeman, “Second harmonic generation with surface guided waves in signal processing geometries”, J. Appl. Phys., vol 54, pp.6813-6217, 1985.
[12] T. Weihan,et al., “The influence of laser frequency band width on the time and space resolved structures of harmonic generation”, Phys.Fluids., vol. 30, pp.1510-1514, 1986.
[13] B. Dromey, et al., “High harmonic generation in the relativistic limit”, Nat. Phys. Vol. 2,pp. 456-459, 2006.
[14] S. Banerjee, A. R.Valenzuela, R. C. Shah RC, A. Maksimchuk, and D.Umstadter, “ High harmonic generation in relativistic laser–plasma interaction”, Phys. Plasmas., vol. 9, 2393, 2002.
[15] R. P.Singh, S. L. Guptaand R. K. Thareja, “Third harmonic generation in air ambient and laser ablated carbon plasma”, Phys. Plasmas., vol. 22, 123302, 2015.
[16] P.Jha, R. K. Mishra,G.Raj, andA. K.Upadhyay, “Second harmonic generation in laser magnetized–plasma interaction”, Phys. Plasmas., vol. 14, 053107, 2007.
[17] M. Mori, E.Takahashi,and K. Kondo, “Image of second harmonic emission generated from ponderomotively excitedplasma density gradient”, Phys.Plasmas., vol. 92, 812, 2002.
[18] N. Wadhwani, P. Kumar, and P Jha.,“Nonlinear Theory of propagation of Intense Laser Pulses in Magnetized Plasma”, Phys. Plasmas, vol. 9, 263, 2002.
[19] H. Sharma, H. Jaloree, J. Parashar, “Magnetic field wiggler assisted third harmonic generation of a Guassian laser pulse in plasma”, Turk J. Phys., vol. 37, pp. 368-374,2013.
[20] M. Singh, D. N. Gupta, “Effect of plasma channeling on third harmonic radiation generation”, Proceeding of IPAC, THPRO064, Dresden Germany, 2014.
[21] N. K. Verma, E. Agrawal, P. Jha, “Phase matche second harmonic via laser plasma interaction”, EPL, 109,15001, 2015.
[22] M. Singh, D. N. Gupta, H. Suk, “Efficient second and third harmonic radiation generation from relativistic laser plasma interaction”, Phys. of Plasmas, vol. 22, 063303, 2015.
[23] M. Matsumoto, and K. Tanaka, “Quasi-phase-matched second-harmonic generation by backward propagating interaction”, EEE J. Quantum Electron.”Vol. 31, 700, 1995.
[24] X. Liu, D. Umstadter, E. Esarey, and A. Ting, “Nonlinear analysis of relativistic harmonic generation by intense laser in plasma”, IEEE Trans. Plasma Sci, vol. 90,21, 1993.
[25] A. Averchi, D. Faccio, R. Berlasso, M. Kolesik, J. V.Moloney, A. Couairon,and P.D. Trapani,“Linear X- wave generation by means of cross phase modulation in Kerr media”, Phys. Rev. A., vol. 77, 021802R, 2008.
[26] A. H. Sheinfux, Z. Henis,M. Levin,and A. Zigler, “Plasma structures for quasiphase matched high harmonic generation,”Appl. Phys. Lett., vol. 98, 141110, 2011.
[27] S. Shibu, V. K.Tripathi,“Phase-matched third harmonic generation of laser radiation in a plasma channel: nonlocal effects”, Phys. Lett. A., vol. 99, 239, 1998.
[28] H. A. Salih, V. K. Tripathi, and B. K. Pandey, “Second harmonic generation of a Gaussian laser beam in a self created magnetized plasma channel”, IEEE Trans. Plasma Sci., vol. 31, 324, 2003.
[29] J. M. Rax, N. J. Fisch., “Phase-matched third harmonic generation in a plasma”, IEEE Trans. Plasma Sci., vol. 21, 105,1993.
[30] U. K. Sapaev, L. Babushkinand J. Herrman, “Quasi-phase-matching for third harmonic generation in noble gases employing ultrasound”, Opt. Exp., vol. 20, 22753, 2012.
[31] N. Kant, D. N. Gupta, and S. Hyong,“Resonant third-harmonic generation of a short-pulse laser from electron-hole plasmas”, Phys. Plasmas., vol. 19, 013101, 2012.
[32] Q. Haque, S. Mahmood, and A. Mushtaq,“Nonlinear electrostatic drift waves in dense electron-positron-ion plasmas”, Phys. Plasmas., vol. 15, 082315, 2008.
[33] P. K. Shukla, B. Eliasson,“Nonlinear aspects of quantum plasma physics”, Phys. Usp., vol.53,51, 2010.
[34] P. K, Shukla, B.Eliasson,“Colloquium. Nonlinear collective interactions in quantum plasmas with degenerate electron fluids,” Rev, Mod, Phys.vol. 83,885,2011.
[35] P. A. Andreev, L. S. Kuzmenkov, and M. I. Trukhanova, “Quantum hydrodynamics approach to the formation of waves in polarized two-dimensional systems of charged and neutral particles”, Phys. Rev. B., vol. 84, 245401, 2008.
[36] F. A. Asenjo, J. Zamanian, M. Marklund, G. Brodin and P. Johansson, “Semi-relativistic effects in spin-1/2 quantum plasmas”, arXiv. 1108, 4781, 2011.
[37] A. P. Mishra,“Dust ion-acoustic shocks in quantum dusty pair-ion plasmas,”Phys. Plasmas,” vol. 16, 033702, 2009.
[38] C. L. Gardner, C. Ringhofer, “Smooth Quantum Potential for the Hydrodynamic Model”, Physical Review E., vol. 53, pp. 157-167, 1996.
[39] P. K. Shukla, B. Eliasson, “Formation and dynamics of dark solitons and vortices in quantum electron plasmas”, P.Phys. Rev. Lett., vol. 96, 24500, 2006.
Cite This Article
  • APA Style

    Nisha Singh Rathore, Punit Kumar. (2016). Phase Matched Third Harmonic Generation of a Gaussian Laser Pulse in High-Density Quantum Plasma. American Journal of Modern Physics, 5(5), 154-161. https://doi.org/10.11648/j.ajmp.20160505.16

    Copy | Download

    ACS Style

    Nisha Singh Rathore; Punit Kumar. Phase Matched Third Harmonic Generation of a Gaussian Laser Pulse in High-Density Quantum Plasma. Am. J. Mod. Phys. 2016, 5(5), 154-161. doi: 10.11648/j.ajmp.20160505.16

    Copy | Download

    AMA Style

    Nisha Singh Rathore, Punit Kumar. Phase Matched Third Harmonic Generation of a Gaussian Laser Pulse in High-Density Quantum Plasma. Am J Mod Phys. 2016;5(5):154-161. doi: 10.11648/j.ajmp.20160505.16

    Copy | Download

  • @article{10.11648/j.ajmp.20160505.16,
      author = {Nisha Singh Rathore and Punit Kumar},
      title = {Phase Matched Third Harmonic Generation of a Gaussian Laser Pulse in High-Density Quantum Plasma},
      journal = {American Journal of Modern Physics},
      volume = {5},
      number = {5},
      pages = {154-161},
      doi = {10.11648/j.ajmp.20160505.16},
      url = {https://doi.org/10.11648/j.ajmp.20160505.16},
      eprint = {https://article.sciencepublishinggroup.com/pdf/10.11648.j.ajmp.20160505.16},
      abstract = {Third harmonic generation due to linearly polarized Gaussian laser pulse propagating through quantum plasma immersed in transverse wiggler magnetic field is studied using the quantum hydrodynamic (QHD)model. The effects associated with the Fermi pressure, the Bohm potential and the electron spin have been taken into account.Wiggler magnetic field plays both a dynamic role in producing the harmonic current and a kinematical role in ensuring phase-matching. It is shown that the harmonic radiation attain the maximum valueat an instant when the phase matching is satisfied and thereafter decreases at later duration of laser pulse. The quantum effects also add to harmonic generation in the phase-matched case.},
     year = {2016}
    }
    

    Copy | Download

  • TY  - JOUR
    T1  - Phase Matched Third Harmonic Generation of a Gaussian Laser Pulse in High-Density Quantum Plasma
    AU  - Nisha Singh Rathore
    AU  - Punit Kumar
    Y1  - 2016/10/06
    PY  - 2016
    N1  - https://doi.org/10.11648/j.ajmp.20160505.16
    DO  - 10.11648/j.ajmp.20160505.16
    T2  - American Journal of Modern Physics
    JF  - American Journal of Modern Physics
    JO  - American Journal of Modern Physics
    SP  - 154
    EP  - 161
    PB  - Science Publishing Group
    SN  - 2326-8891
    UR  - https://doi.org/10.11648/j.ajmp.20160505.16
    AB  - Third harmonic generation due to linearly polarized Gaussian laser pulse propagating through quantum plasma immersed in transverse wiggler magnetic field is studied using the quantum hydrodynamic (QHD)model. The effects associated with the Fermi pressure, the Bohm potential and the electron spin have been taken into account.Wiggler magnetic field plays both a dynamic role in producing the harmonic current and a kinematical role in ensuring phase-matching. It is shown that the harmonic radiation attain the maximum valueat an instant when the phase matching is satisfied and thereafter decreases at later duration of laser pulse. The quantum effects also add to harmonic generation in the phase-matched case.
    VL  - 5
    IS  - 5
    ER  - 

    Copy | Download

Author Information
  • Department of Physics, University of Lucknow, Lucknow, India

  • Department of Physics, University of Lucknow, Lucknow, India

  • Sections