We investigate a quantum mechanical system defined as an unsymmetrical bound magnetopolaron immersed in the field of the bulk longitudinal optical (LO)-phonon strong coupling. The ground and the first-excited state of the eigenenergy are derived by using variational method of Pekar type. The effect of the longitudinal and transversal confinement strengths, the effect of magnetic and electric field and the effect of the electron-phonon coupling constant on the polaron characteristics are investigated. These dependencies demonstrate that, they are more flexible tunable methods to restrain quantum decoherence and aggrandize the amplitude of the probability density.
Published in | American Journal of Modern Physics (Volume 4, Issue 3) |
DOI | 10.11648/j.ajmp.20150403.12 |
Page(s) | 109-117 |
Creative Commons |
This is an Open Access article, distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution and reproduction in any medium or format, provided the original work is properly cited. |
Copyright |
Copyright © The Author(s), 2015. Published by Science Publishing Group |
Magnetopolaron, Quantum Dot, Electric Field
[1] | W. P. Li, J. W. Yin, Y. F. Yu, Z.W. Wang and J.L. Xiao, J. Low Temp. Phys. 160 112(2010) |
[2] | Y. F. Yu, W.P. Li, J. W. Yin and J.L. Xiao, J. Low Temp. Phys. 50 3322(2011) |
[3] | Y. J. Wen, J. L. Xiao, Y. F. Yu, Z. W. Wang, Chinese Phys. B 18 446 (2009) |
[4] | S. Jia-kui, L. Hong-Juan, J. L. Xiao, Physica B 404 1961(2009) |
[5] | M. A. Nielsen, I. L. Chang, Quantum Computation and Quantum Information (Cambridge University Press, Cambridge, 2000) |
[6] | I. D’Amico, Microelectron. J. 37 1440(2006) |
[7] | C. H. Bennett, D. P. DiVincenzo, Nature 404 247 (2000) |
[8] | P. Hawrylak, M. Korkusinski, Solid State Commun 136 508 (2005) |
[9] | S. D. Sarma, R.D.Sousa, X. D. Hu, B. Koiller , Solid State Commun. 133 737(2005) |
[10] | M. A. Kastner , Rev. Mod. Phys. 64 849 (1992) |
[11] | M. W. Dellow, P. H. Beton, C. J.G. M. Langerak, T. J. Foster, P. C. Main, L. Eaves, M. Henini, S. P. Beaumont and C. D. W. Wilkinson, Phys. Rev. Lett.68, 1754 (1992) |
[12] | S. S. Li and J. B. Xia, Phys. Rev. B 58 3561 (1998) |
[13] | S. S. Li and J. B. Xia, Appl. Phys. Lett. 87 043102 (2005) |
[14] | C. Sikorski and U. Merkt, Phys Rev. Lett. 62 2164 (1989) |
[15] | S.S. Li and J. B. Xia, Phys. Lett. A 366 120 (2007) |
[16] | A. Lorke, J. P. Kotthaus and K. Ploog, Phys. Rev. Lett. 64 2559(1990) |
[17] | X.H Qi, X. J. Kong and J.J. Liu, Phys. Rev. B , Condens. Matter 58(16) 10578 (1998) |
[18] | S. S. Li and J. B. Xia, J. Appl. Phys. 100 083714 (2006) |
[19] | K. D. Zhu and T. Kobayashi, Solid State Commun. 92 353(1994) |
[20] | T. C. Au-Yeung, S. L. Kho, S. W. Gu, L. H. Hong and E. M. C. Wong, J. Phys.: Condens. Matter 6 6761 (1994) |
[21] | S. Sil and A. Chatterjee, J. Phys. Condens. Matter 3 9401(2001) |
[22] | M. Bhattacharya, A. Chatterjee and T. K. Mitra, Phys. Rev. B 39 8351 (1989) |
[23] | R. Q. Wang, H. J. Xie and Y. B. Yu, Phys. Stat. Sol. B 242 890 (2005) |
[24] | B. S. Kandemir and A. Cetin, Phys. Rev. B 65 054303(2002). |
[25] | S. H. Chen and J.L. Xiao, Int. J. of Mod. Phys. B 22 162611(2008). |
[26] | J. L. Xiao, J. Low Temp Phys 172 122(2013). |
[27] | S.S. Li, J. B. Xia, F. H. Yang, Z. C. Niu, S. L. Feng, H. Z. Zheng, J. Appl. Phys. 90 6151(2001) |
[28] | S. S. Li, L. Gui- Lu, F. S. Bai, S. L. Feng, H. Z. Zheng, Proc. Natl. Acad. Sci. USA 98 11847(2001). |
[29] | Z. W. Wang, J.L. Xiao, Acta Phys. Sin. 56 678 (2007). |
[30] | B. S. Kandemir and A. Cetin, J. phys. condens. Matter 17 667(2005). |
[31] | Y. Lepine and G. Bruneau, J. Phys. Condens. Matter 10 1495(1998). |
[32] | D. Tolkunov, V. Privman, Phys. Rev. A 69 062309 (2004). |
[33] | A. Grodecka, P. Machnikowski, Phys. Rev. B 73 125306 (2006). |
[34] | M. Lovric , H. G. Krojanski, D. Suter, Phys. Rev. A 75 042305 (2007). |
APA Style
Alain Jerve Fotue, Maurice Tiotsop, Nsangou Issofa, Sadem Christian Kenfack, Amos Virngo Wirngo, et al. (2015). Bound Magnetopolaron in an Asymmetric Cylindrical Quantum Dot Qubit in an Electric Field. American Journal of Modern Physics, 4(3), 109-117. https://doi.org/10.11648/j.ajmp.20150403.12
ACS Style
Alain Jerve Fotue; Maurice Tiotsop; Nsangou Issofa; Sadem Christian Kenfack; Amos Virngo Wirngo, et al. Bound Magnetopolaron in an Asymmetric Cylindrical Quantum Dot Qubit in an Electric Field. Am. J. Mod. Phys. 2015, 4(3), 109-117. doi: 10.11648/j.ajmp.20150403.12
AMA Style
Alain Jerve Fotue, Maurice Tiotsop, Nsangou Issofa, Sadem Christian Kenfack, Amos Virngo Wirngo, et al. Bound Magnetopolaron in an Asymmetric Cylindrical Quantum Dot Qubit in an Electric Field. Am J Mod Phys. 2015;4(3):109-117. doi: 10.11648/j.ajmp.20150403.12
@article{10.11648/j.ajmp.20150403.12, author = {Alain Jerve Fotue and Maurice Tiotsop and Nsangou Issofa and Sadem Christian Kenfack and Amos Virngo Wirngo and Hilaire Fotsin and Lukong Cornelius Fai}, title = {Bound Magnetopolaron in an Asymmetric Cylindrical Quantum Dot Qubit in an Electric Field}, journal = {American Journal of Modern Physics}, volume = {4}, number = {3}, pages = {109-117}, doi = {10.11648/j.ajmp.20150403.12}, url = {https://doi.org/10.11648/j.ajmp.20150403.12}, eprint = {https://article.sciencepublishinggroup.com/pdf/10.11648.j.ajmp.20150403.12}, abstract = {We investigate a quantum mechanical system defined as an unsymmetrical bound magnetopolaron immersed in the field of the bulk longitudinal optical (LO)-phonon strong coupling. The ground and the first-excited state of the eigenenergy are derived by using variational method of Pekar type. The effect of the longitudinal and transversal confinement strengths, the effect of magnetic and electric field and the effect of the electron-phonon coupling constant on the polaron characteristics are investigated. These dependencies demonstrate that, they are more flexible tunable methods to restrain quantum decoherence and aggrandize the amplitude of the probability density.}, year = {2015} }
TY - JOUR T1 - Bound Magnetopolaron in an Asymmetric Cylindrical Quantum Dot Qubit in an Electric Field AU - Alain Jerve Fotue AU - Maurice Tiotsop AU - Nsangou Issofa AU - Sadem Christian Kenfack AU - Amos Virngo Wirngo AU - Hilaire Fotsin AU - Lukong Cornelius Fai Y1 - 2015/04/27 PY - 2015 N1 - https://doi.org/10.11648/j.ajmp.20150403.12 DO - 10.11648/j.ajmp.20150403.12 T2 - American Journal of Modern Physics JF - American Journal of Modern Physics JO - American Journal of Modern Physics SP - 109 EP - 117 PB - Science Publishing Group SN - 2326-8891 UR - https://doi.org/10.11648/j.ajmp.20150403.12 AB - We investigate a quantum mechanical system defined as an unsymmetrical bound magnetopolaron immersed in the field of the bulk longitudinal optical (LO)-phonon strong coupling. The ground and the first-excited state of the eigenenergy are derived by using variational method of Pekar type. The effect of the longitudinal and transversal confinement strengths, the effect of magnetic and electric field and the effect of the electron-phonon coupling constant on the polaron characteristics are investigated. These dependencies demonstrate that, they are more flexible tunable methods to restrain quantum decoherence and aggrandize the amplitude of the probability density. VL - 4 IS - 3 ER -