It is well known that the quasi-exact solvable eigenvalues of the Schrödinger equation with potential V(x)=-(ξcosh2x-iM)2 is real for PT-invariant non-Hermitian potential in case the parameter M is odd integer and complex conjugate pairs when M is even integer. In this work the Asymptotic Iteration Method (AIM) were used to solve this problem for M odd and even integer, and for any non-integer M values.
Published in | American Journal of Modern Physics (Volume 4, Issue 1) |
DOI | 10.11648/j.ajmp.20150401.14 |
Page(s) | 19-21 |
Creative Commons |
This is an Open Access article, distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution and reproduction in any medium or format, provided the original work is properly cited. |
Copyright |
Copyright © The Author(s), 2015. Published by Science Publishing Group |
Asymptotic Iteration Method, Eigenvalues, Complex Potential, Non- Quasi Exact Solvable (QES)
[1] | Carl M. Bender, Stefan Boettcher, Phys. Rev. Lett. 80, 5243–5246 (1998). |
[2] | Carl M. Bender, Gerald V.Duune, Peter N.Meisnnger, Physics Letters A, Volume 252, Issue 5, page 272- 276 (1 March 1999). |
[3] | C. Quesen, S. Mallik, B. Bagchi, Int.J.Mod.Phys. A16 2859-2872 (2001). |
[4] | S. Meyur, S. Debnath, Bulg. J. Phys. 36 (77- 87), (2009). |
[5] | Qing-Hai Wang, Pramana Journal of physics, V 37, No .2 (315- 322), (2009). |
[6] | Brice Camus, Journal of Differential Equations, Volume 226, Issue 1, 295- 322 (2006). |
[7] | M. E. Kellman, Annual Review of Physical Chemistry, vol. 46, pp. 354- 421, (1995). |
[8] | F. Cannata, G. Junker, and J. Trost, Phys. Lett A 246, 129 (1998). |
[9] | Tanwa Arpornthip, Carl M. Bender, Pramana Journal of physics, V 37, No. 2 (259- 267), (2009). |
[10] | G. L´evan, F. Cannata, and A. Ventura, J. Phys. A: Math. Gen. 34, 839 (2001). |
[11] | A. D. Alhaidari, J. Phys. A: Math. Theor. 40, 6305 (2007). |
[12] | Bijan Bagchi et al, Int. J. Mod. Phys. A 20, 7107 (2005). |
[13] | C. M. Bender and S. Boettcher, J. Phys. A: Math. Gen. 31, L 273 (1998). |
[14] | A Khare and B P Mandal, Phys. Lett. A272, 53 (2000). |
[15] | H. Ciftci, R. L. Hall, and N. Saad, J. Phys. A: Math. Gen. 36, 11807 (2003). |
[16] | F. M. Fern´andez, J. Phys. A: Math. Gen. 37, 6173 (2004). |
[17] | A. J. Sous, J. Mod. Phys. Lett. A 21, 1675 (2006). |
[18] | A. J. Sous and M. I. EL-Kawni, Int. J. Mod. Phys. A 24, 4169 (2009). |
[19] | T. Barakat 2006 J. Phys. A: Math. Gen. 39 823, Issue 4 (27 January 2006). |
APA Style
Marwan Izzat El-Kawni, Abdulla Jameel Sous. (2015). A Non Quasi Exact Solvable Eigenvalue Problem with PT-Invariant Non-Hermitian Complex Potential. American Journal of Modern Physics, 4(1), 19-21. https://doi.org/10.11648/j.ajmp.20150401.14
ACS Style
Marwan Izzat El-Kawni; Abdulla Jameel Sous. A Non Quasi Exact Solvable Eigenvalue Problem with PT-Invariant Non-Hermitian Complex Potential. Am. J. Mod. Phys. 2015, 4(1), 19-21. doi: 10.11648/j.ajmp.20150401.14
AMA Style
Marwan Izzat El-Kawni, Abdulla Jameel Sous. A Non Quasi Exact Solvable Eigenvalue Problem with PT-Invariant Non-Hermitian Complex Potential. Am J Mod Phys. 2015;4(1):19-21. doi: 10.11648/j.ajmp.20150401.14
@article{10.11648/j.ajmp.20150401.14, author = {Marwan Izzat El-Kawni and Abdulla Jameel Sous}, title = {A Non Quasi Exact Solvable Eigenvalue Problem with PT-Invariant Non-Hermitian Complex Potential}, journal = {American Journal of Modern Physics}, volume = {4}, number = {1}, pages = {19-21}, doi = {10.11648/j.ajmp.20150401.14}, url = {https://doi.org/10.11648/j.ajmp.20150401.14}, eprint = {https://article.sciencepublishinggroup.com/pdf/10.11648.j.ajmp.20150401.14}, abstract = {It is well known that the quasi-exact solvable eigenvalues of the Schrödinger equation with potential V(x)=-(ξcosh2x-iM)2 is real for PT-invariant non-Hermitian potential in case the parameter M is odd integer and complex conjugate pairs when M is even integer. In this work the Asymptotic Iteration Method (AIM) were used to solve this problem for M odd and even integer, and for any non-integer M values.}, year = {2015} }
TY - JOUR T1 - A Non Quasi Exact Solvable Eigenvalue Problem with PT-Invariant Non-Hermitian Complex Potential AU - Marwan Izzat El-Kawni AU - Abdulla Jameel Sous Y1 - 2015/01/27 PY - 2015 N1 - https://doi.org/10.11648/j.ajmp.20150401.14 DO - 10.11648/j.ajmp.20150401.14 T2 - American Journal of Modern Physics JF - American Journal of Modern Physics JO - American Journal of Modern Physics SP - 19 EP - 21 PB - Science Publishing Group SN - 2326-8891 UR - https://doi.org/10.11648/j.ajmp.20150401.14 AB - It is well known that the quasi-exact solvable eigenvalues of the Schrödinger equation with potential V(x)=-(ξcosh2x-iM)2 is real for PT-invariant non-Hermitian potential in case the parameter M is odd integer and complex conjugate pairs when M is even integer. In this work the Asymptotic Iteration Method (AIM) were used to solve this problem for M odd and even integer, and for any non-integer M values. VL - 4 IS - 1 ER -