| Peer-Reviewed

Geometrical, Algebraic, Functional and Correlation Inequalities Applied in Support of James-Stein Estimator for Multidimensional Projections

Received: 9 November 2017     Accepted: 5 December 2017     Published: 5 July 2018
Views:       Downloads:
Abstract

Isoperimetric, Milman reverse, Hilbert, Widder, Fan-Taussky-Todd, Landau, and Fortuin–Kasteleyn–Ginibre (FKG) inequalities in n dimensions in investigations of multidimensional estimators support the use of James-Stein estimator against classical least squares as applied to Cumulant Analysis, Associate Random Variables, and Time Series Analysis.

Published in Applied and Computational Mathematics (Volume 7, Issue 3)
DOI 10.11648/j.acm.20180703.14
Page(s) 94-100
Creative Commons

This is an Open Access article, distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution and reproduction in any medium or format, provided the original work is properly cited.

Copyright

Copyright © The Author(s), 2018. Published by Science Publishing Group

Keywords

Multidimensional Time Model, James-Stein Estimator, Sampling and Functional Inequalities

References
[1] M. Fundator Applications of Multidimensional Time Model for Probability Cumulative Function for Parameter and Risk Reduction. In JSM Proceedings Health Policy Statistics Section Alexandria, VA: American Statistical Association. 433-441.
[2] M. Fundator. Multidimensional Time Model for Probability Cumulative Function. In JSM Proceedings Health Policy Statistics Section. 4029-4039.
[3] M. Fundator. Testing Statistical Hypothesis in Light of Mathematical Aspects in Analysis of Probability doi:10.20944/preprints201607.0069. v1.
[4] M. Fundator Application of Multidimensional time model for probability Cumulative Function to Brownian motion on fractals in chemical reactions (44th Middle Atlantic Regional Meeting, June/9-12/16, Riverdale, NY) Academia Journal of Scientific Research (ISSN 2315-7712) DOI: 10.15413/ajsr.2016.0167 In preparation for publication.
[5] Michael Fundator Application of Multidimensional time model for probability Cumulative Function to Brownian motion on fractals in chemical reactions (Northeast Regional Meeting, Binghamton, NY, October/5-8/16). Academia Journal of Scientific Research (ISSN 2315-7712) DOI: 10.15413/ajsr.2016.0168 In preparation for publication.
[6] Michael Fundator Applications of Multidimensional Time Model for Probability Cumulative Function for design and analysis of stepped wedge randomized trials. Academia Journal of Scientific Research (ISSN 2315-7712) DOI: 10.15413/ajsr.2016.0169 In preparation for publication.
[7] Michael Fundator Multidimensional Time Model for Probability Cumulative Function and Connections Between Deterministic Computations and Probabilities Journal of Mathematics and System Science 7 (2017) 101-109 doi: 10.17265/2159-5291/2017.04.001.
[8] N. Bohr, H. A. Kramers, J. C. Slater The quantum Theory of Radiation.
[9] J. Hendry Bohr-Kramers-Slater: A Virtual Theory of Virtual Oscillators and Its Role in the History of Quantum Mechanics. A. N.
[10] M. P. Bianchi A BGK-type model for a gas mixture undergoing reversible reaction.
[11] H. A. Kramers “Brownian motion in a field of force and the diffusion model of chemical reactions.” Physica, 7, 4, 284-304 (1940).
[12] R. von Mises “Probability, Statistics and Truth”.
[13] P. Morters “Lecture notes.”
[14] D. R. Brillinger “Moments, cumulants, and some applications to stationary random processes”.
[15] Y. L. Tong, “Relationship between stochastic inequalities and some classical mathematical inequalities,” Journal of Inequalities and Applications, vol. 1, no. 1, pp. 85-98, 1997.
[16] J. D Esary, F Proschan, D. W Walkup “Association of random variables with applications” Ann. Math. Statist., 38 (1976), pp. 1466–1474
[17] Paul Richard Halmos “Lectures on Boolean Algebras” Van Nostrand.
[18] Khinchin “Three pearls of Number theory”.
[19] V Blåsjö The Evolution of the Isoperimetric Problem https://www.maa.org/sites/default/files/pdf/upload_library/22/Ford/blasjo526.pdf.
[20] Sariel Har-Peled The Johnson-Lindenstrauss Lemma.
[21] R. Tapia The Isoperimetric Problem Revisited: Extracting a Short Proof of Sufficiency from Euler's 1744 Approach to Necessity.
[22] P J. H Pineyro Gergonne; The isoperimetric problem and the Steiner's symmetrization.
[23] Gergonne, J. D.: Goeometrie. Recherche de la surface plane de moindre contour, entre toutes celles de m^eme etendue, et du corps de moindre surface, entre tous ceux de m^eme volume, Annales de Gergonne 4 (1813-1814), 338-343.
[24] Hilbert D. “Uber die Darstellung definiter Formen als Summe von Formenquadraten” Math Ann. 32, 342-350 (88).
[25] I. Schur, Bemerkungungen zur Theorie der beschr ankten Bilinearformen mit endlich vielen Ver andlichen, J. reine angew. Math., 140 (11).
[26] D. V. Widder, An inequality related to one of Hilbert’s, J. London Math. Soc. 4, 194-198.
[27] Frazer C. Note on Hilber’s inequality, J. London Math. Soc. 21/46 pp. 7-9.
[28] G. J. O. Jameson Hilbert’s inequality and related results Notes
[29] G. H. Hardy, “Prolegomena to a chapter on inequalities.”
[30] G. H. Hardy, J. E. Littlewood and G. P´olya, Inequalities, 2nd ed., Cambridge University Press.
[31] Mitrinovic, Dragoslav S. Analytic Inequalities.
[32] G. D. Handler Hilbert and Hardy type inequalities.
[33] H. S. Wilf, Finite sections of some classical inequalities, Ergebnisse der Mathematik, Band 52.
[34] Minkowski, Hermann (1896). Geometrie der Zahlen. Leipzig: Teubner.
[35] Milman, Vitali D. (1986). "Inégalité de Brunn-Minkowski inverse et applications à la théorie locale des espaces normés. [An inverse form of the Brunn-Minkowski inequality, with applications to the local theory of normed spaces]". C. R. Acad. Sci. Paris Sér. I Math. 302 (1): 25–28.
[36] E. F. Beckenbach and R. Bellman. “Inequalities”, Springer, Berlin, 1983.
[37] Fan. K, O. Taussky and J. Todd. Discrete analogues of inequalities of wirtinger. Monatsh, Math, 59 (1995), 73-90.
[38] C. Stein, “Inadmissibility of the Usual Estimator for the Mean of a Multivariate Normal Distribution,”in Proc. Third Berkeley Symp. OnMath. Statist. and Prob., vol. 1, pp. 197-206.
[39] C. Stein. Estimation of the mean of a multivariate normal distribution. Ann. Stat., 9 (6): 1135–1151.
[40] D. E. A. Giles. et al The positive-part Stein-rule estimator and tests of hypotheses. Economics Letters 26 (1988): 49-52.
[41] Fortuin, C. M.; Kasteleyn, P. W.; Ginibre, J. Correlation inequalities on some partially ordered sets. Comm. Math. Phys. 22 (1971), no. 2, 89--103.
[42] R. A. L. Carter et al Unbiased Estimation of the MSE Matrix of Stein-Rule Estimators, Confidence Ellipsoids, and Hypothesis Testing.
[43] H. M. Hudson “A Natural Identity for exponential families with applications in multiparameter estimation” The Annals of Statistics V. 6, N 3.
[44] Z-G Xiao et al A simple new proof of Fan-Taussky-Todd inequalities.
[45] H. Alzer Converses of two inequalities of Ky Fan, O. Taussky, and J. Todd Journal of Mathematical Analysis and ApplicationsVolume 161, Issue 1, October/91, 142-147https://doi.org/10.1016/0022-247X (91)90365-7.
Cite This Article
  • APA Style

    Michael Fundator. (2018). Geometrical, Algebraic, Functional and Correlation Inequalities Applied in Support of James-Stein Estimator for Multidimensional Projections. Applied and Computational Mathematics, 7(3), 94-100. https://doi.org/10.11648/j.acm.20180703.14

    Copy | Download

    ACS Style

    Michael Fundator. Geometrical, Algebraic, Functional and Correlation Inequalities Applied in Support of James-Stein Estimator for Multidimensional Projections. Appl. Comput. Math. 2018, 7(3), 94-100. doi: 10.11648/j.acm.20180703.14

    Copy | Download

    AMA Style

    Michael Fundator. Geometrical, Algebraic, Functional and Correlation Inequalities Applied in Support of James-Stein Estimator for Multidimensional Projections. Appl Comput Math. 2018;7(3):94-100. doi: 10.11648/j.acm.20180703.14

    Copy | Download

  • @article{10.11648/j.acm.20180703.14,
      author = {Michael Fundator},
      title = {Geometrical, Algebraic, Functional and Correlation Inequalities Applied in Support of James-Stein Estimator for Multidimensional Projections},
      journal = {Applied and Computational Mathematics},
      volume = {7},
      number = {3},
      pages = {94-100},
      doi = {10.11648/j.acm.20180703.14},
      url = {https://doi.org/10.11648/j.acm.20180703.14},
      eprint = {https://article.sciencepublishinggroup.com/pdf/10.11648.j.acm.20180703.14},
      abstract = {Isoperimetric, Milman reverse, Hilbert, Widder, Fan-Taussky-Todd, Landau, and Fortuin–Kasteleyn–Ginibre (FKG) inequalities in n dimensions in investigations of multidimensional estimators support the use of James-Stein estimator against classical least squares as applied to Cumulant Analysis, Associate Random Variables, and Time Series Analysis.},
     year = {2018}
    }
    

    Copy | Download

  • TY  - JOUR
    T1  - Geometrical, Algebraic, Functional and Correlation Inequalities Applied in Support of James-Stein Estimator for Multidimensional Projections
    AU  - Michael Fundator
    Y1  - 2018/07/05
    PY  - 2018
    N1  - https://doi.org/10.11648/j.acm.20180703.14
    DO  - 10.11648/j.acm.20180703.14
    T2  - Applied and Computational Mathematics
    JF  - Applied and Computational Mathematics
    JO  - Applied and Computational Mathematics
    SP  - 94
    EP  - 100
    PB  - Science Publishing Group
    SN  - 2328-5613
    UR  - https://doi.org/10.11648/j.acm.20180703.14
    AB  - Isoperimetric, Milman reverse, Hilbert, Widder, Fan-Taussky-Todd, Landau, and Fortuin–Kasteleyn–Ginibre (FKG) inequalities in n dimensions in investigations of multidimensional estimators support the use of James-Stein estimator against classical least squares as applied to Cumulant Analysis, Associate Random Variables, and Time Series Analysis.
    VL  - 7
    IS  - 3
    ER  - 

    Copy | Download

Author Information
  • Division of Behavioral and Social Sciences and Education, National Academies of Sciences, Engineering, Medicine, Washington, USA

  • Sections